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1. INI IJN L CTI ON

The extensive activity in the design, development, test, and application of

constrained layer damping treatments was initiated by the 1959 paper (1) by

E. M. Kerwin entitled "Damping of Flexural Waves by a Constrained Viscoelastic

Layer", Dr. J. J. Baruch is identified in chat paper as having suggested the

shear damping mechanism, li the same year, a paper was presented at the Collo-

quium on Structural Damping sponsored by the Shock and Vibration Committee of

the ASE. In that paper (2), Ross, Ungar and Kerwin gave a more complete anal-

ysis of the mechanism producing damping and identified several critical design

parameters. These two papers may be regarded as the foundation of the body Qf

literature which has developed since that time. Two other related works were

published earlier but did not have the same degree of impact. H. J. Plass, Jr.,

considered in 1957 the damping of a sandwich plate with viscoelastic core, In

his work (3), the face plates were treated as membranes. Thus the concept is

fundamentally different than that of a beam with damping layer. In 1958, James

Whittier investigated the use of a spaced and constrained viscoelastic layer as

a means of damping a cantilever beam (4).

Since 1959, a number of reviews have been written of damping in general and

of constrained layer damping in particular. Among these are the review (5 by

Kerwin of early work (1964), a comprehensive review by Nakra (6), and one by

Nelson (7) which emphasizes the applications to large structures.

In this paper, some of the fundamental principles of constrained layer

damping methodology will be addressed. Simple analyses for significant classes

of problems will be outlined, and a discussion of the principal contributions

of the past two decades will be attempted. The use of constrained layer treat-

ments in isolation systems will not be addressed, nor will the shock response

of structures employing constrained layer treatments on sandwich beams with
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V iSCoe I a s L ic C Ore S , Lvu , t I,,, Ih tRI .it., I y siu have beeti pert urnied (8). D is-

c us s ioils 01 ,,I C itic lilat i .i I I 0p Ie rt i an ,i uxpe r i meitla I uict buds , itnd ap I icat ions

Will ailso hlut be addressed.

The analy~ses which have bveii reported ill LILC Ii IraLure have been of two

typOS ; the dev~elOpffalit Jjd SO ILutioil LA t le equati onS of motilon for the comupos-

ite system (4) or the deductioni ot an ll ctICiVC ComlplCX StiifneSS (1). Both

approaches will be employed liere.



II. QUASI-STATIC ANALYSES

Even though it is well known that a significant frequency effect is present

in constrained layer damping treatments, we will find it beneficial to begin by

considering the quasi-static analysis of several simple but important configu-

rations. In each of these first four examples, we assume that weightless and

frictionless constraints are supplied so that no bending deformations occur.

Following this, the coupled bending-axial deformation case will be explored.

A. Axial Deformations

I. Uniform Surface Treatments. Materials having an inherently high damping

capacity must be used effectively if optimal increases in dOmping are to be

obtained. To demonstrate the truth of this assertion, let us consider several

idealized examples. First, let us suppose that a layer of uniform thickness,

t, of a material having a complex Young's modulus, EI + iE 2 , is added over a

width b of a tension member of thickness h, modulus E, and length L, which is

subjected to a fluctuating load of amplitude P. For simplicity, we assume

further that the frequency of loading (or the density) is such that inertial

effects may be neglected.

If a tip deflection of amplitude 6 results from application of load P to

the configuration shown in Figure la, we may assume the axial strain in the

member and the layers is identical, i.e.

c = 6/L (i)

The amplitudes of force and displacement are related through

P = {(Eh + E1t)
2 + (E2t)2}1bc (2)

The maximum strain energy stored during any one cycle is

3
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u ( + bC2L (3)
Us - (Eh i. E ltbO

and the energy dissipated is

D = J ocdtdv (4)

V

= tbLE 2C2 (5)

Thus the loss factor for the entire structure is

D tE2
s 2wU Eh + E1t (6)

The form, in the nature of a rule of mixtures, arises only because the coupled

bending deformation was not permitted to occur. As the storage modulus (E1 ) of

most high damping materials is much less than of the structures to which they

are to be applied,

E 2 t (7)

s Eh

and high loss factors can be achieved only by adding large amounts of high loss

materials.

2. Rigid Constraining Layer. It has been well known for more than twenty

years that a more effective means of achieving high loss factors is to employ

a mechanism for developing a high shear strain in the added material. Thus, we

next consider the configuration depicted on Figure lb. A cover sheet of thick-

ness tc and modulus Ec is placed over the added layer and restrained at one end.

The fluctuating load, P, then induces a state of shear in the damping layer.

5



As a first approximation, we will regard the constraining layer to experience no

axial deformation. The requirement that no bending moment may develop necessi-

tates the rigid constraining layer be of infinite modulus and vanishing thick-

ness. If we also neglect force transfer to the cover sheet, the shear strain

distribution in the shear layer varies from zero at the fixed end to a maximum

at the free end according to

a = x (8)
t L

Here 6 is again the tip displacement due to the axial load. If the shear layer

has a complex modulus G = I + iG2, the energy dissipated per cycle in the layer

is readily computed from Equation (4) to be

Ds =G 2 2 Lb/(3t) (9)

The maximum strain energy stored during the cycle is

G JL2

u s  Eh + 1 b 2 (10)
s 2 6t L

If G1 << E, the energy stored in the damping material is negligible compared to

that stored in the structure, and the approximate loss factor is found to be

T1 2w G2 L2

Ss 3 Eth (11)

We observe that more effective use (higher loss factor) of the damping material

is achieved through the use of less rather than more of the damping material.

Comparison of Equation (11) with Equation (7) shows the effectiveness of the

constrained layer mechanism. As t and h may be much smaller than L, the con-

strained shear layer has the potential for producing much higher levels of

6



damping than does the extensional surface treatment. The collection of system

parameters appearing in Equation (11) will later be seen to play a dominant role

in the effectiveness of more general treatments.

While this model and analysis serves well to demonstrate the effectiveness

of the shear mechanism, Equation (11) is not adequate for design purposes. When

the shear strains in the damping layer are made large, the influence of the

shear layer on the deformations of the cover sheet and the member cannot be

ignored. Their effect is to reduce the energy dissipated. Further, the shear

strain in the layer cannot be made arbitrarily large (through making the thick-

ness arbitrarily small) or the concomitant large shear stress will eventually

produce failure of the cover sheet if not of the shear layer itself.

3. Complete Analysis: Axial Deformations. For these reasons, we require

a complete deformation analysis of the three elements of this structural system;

the member, the shear layer, and the cover sheet. From the free body diagrams

of Figure 2, we may write the following

3T
C+ Tb =0 (12a)ax +  1a

aT
- Tb = 0 (12b)ax

c c c ax

au
T =bEh ax (13b)

where Tc' Uc, Tm, Um are the tensile force and displacement in cover sheet and

member, respectively. In the shear layer, of complex modulus G*,

7
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G i~G) G% (14)

2t

where

A Um - U (15)

The necessary boundary conditions are

U (0) =U (0) = T (L) = 0 and T (L) =P (16)

The temporal dependence exp(iwt) has been suppressed in all variables, leaving

only the x dependence. Elimination of Tcl TmI and T leads to

-X2- - 2= 0 (7

G 1 1 L2 ()
t tE + t E.IL2(8

c c

A =-iA sin(i~x/L) A sinh(Ox/L) (19)

A = -P (20)
EbhO cosh(O)

T =PG *L2 (I COSh(xL (21)
c =thEO

2  cosho

T = P-T c(22)

Finally, the deflection at the tip is

6 U (L) = tEPL PG*L' tanh(8) (23)

m (tcEc + hE)b + 8bt (hE )

9



Equation (21) may be used to determine the tensile force in the cover sheet,

which must be kept below that value which produces failure. Equations (19) and

(20) [together with (14)] may be used as a design constraint to keep the shear

stress in the layers within allowable limits. The energy dissipated per cycle

may be computed from

4

D = iG 2 jyjdv - j J A 2dx (24)
V 0

D C2 bL (-PL)= F(a) (25)

s t bhE

where

I {tan(i8)/(i8)}

F(8) =- - (26)
2 R {0) I f81e m

The maximum energy stored during the cycle may be deduced from Equation (23).

Let

6 = (CI + iC2 )P (27)

Then the peak stored energy is

C P2

U - (28)
s 2

where

L L3 G* tan iB

(tcE c + hE)b bt(hE)2  e iB (29)

10



From the energy dissipated and energy stored, a structural loss factor may

be computed 4rom Equation (6) as

C2 L2  F(a)

s E th 1 L 2 R tan i630
t E h e E iB-

h---r 1

~hE

For design purposes, it is useful to note that only four parameters need be

considered:

(a) a characterization of the damping material

x1 = GI/G 2  (31)

(b) a comparison of the damping material and the structural material

x2 G2 /E (32)

(c) a comparison of the cover sheet stiffness to that of the structural

member

tE
c c . (33)

3- hE

(d) a geometric factor, incorporating the length and thickness of the

damping layer

x L2 (34)
4 ht

Of these, x2 and x4 appear only as a product, in the manner of Equation (11).

A satisfactory design must also take into account the maximum stress on the

cover sheet and the maximum strain in the layer. The maximum stress occurs at

II



the fixed end. The tensile force is given by Equation (21) and may be expressed

in terms of these same three parameters. The maximum shear strain occurs at the

free tip and is

Amax _ PL tanh 8 (35)
max t thEb8

Thus

P L2 ,G* tan i8 (36)
max *L'-b th LE io

Here we note an explicit dependence on length not present in the previous

expressions.

4. Constrained Layer on Thick Substrate. For a layer attached to a very

thick substrate (Figure 3), a modified analysis is appropriate. In this case,

there is negligible load transfer to the lower member, and we may assume a

uniform strain c over a length L of the substrate. It can be easily shown0

that the energy dissipated in the configuration is

irG bL'

D 2 t F(R )e o (37)
s t R 0

where

8R2  G*L 2

R tt E (38)
cc

The strain energy in cover sheet and shear layer are now negligible compared to

that of the substrate. Hence

Ds  G2 L2

ns 2 U E th F(R) (39)

12
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where the strain energy is that of the length L of substrate only. Again, the

factor G2L2/(Eth) is of major significance.

It should be noted that each of these analyses may be applied to a damping

layer free on both ends by observing that either half of such a layer corre-

sponds to the cases considered above.

14



B. Flexural Deturmations

1. Unitorm Extensional Coatings (Oberst Beam). It is appropriate to begin

our consideration of flexural deformations by considering the classic problem of

the free layer treatment. The Oberst beam is the prototype of damping treatments

and motivated the development of the constrained layer. Further, there has been

significant attention devoted, as we shall see, to developing the concept of an

equivalent homogeneous layer for multiple layer constrained treatments. Such an

equivalent homogeneous layer is then used in the equations of the Oberst beam.

Jones has given (9) a particularly simple derivation for the vibrating

Oberst beam. This approach may be easily adapted to provide a derivation appro-

priate to the quasi-static approach we are following in these sections. Let h

and t be, respectively, the thickness of a beam and a viscoelastic covering on

one side, as was depicted in Figure la. In bending, the neutral axis will be

located a distance mh into the beam, measured from the interface. The net axial

force acting on the section vanishes if

mh (m+n)h
RI E z Zj-- dz} O (40)
e zz+*R e (1m{ i-V 2 R dz + I h -v2 R d %0

-( l-m)h mh

Here n = t/h, R is the radius of curvature, and z is measured from the neutral

axis. This statement is appropriate for a beam, or for a unit width of a plate

if Poisson's ratio for plate and viscoelastic layer are the same. Further, we

let the ratio of moduli

E*

e Re-) (41)
e E

Then,

1 - en2
m 2(1 + ne) (42)

15



The flexural rigidity of each component may be computed from:

For the elastic component

mh
... L. I'Eh3A

z~d z = 2lv)(43a)

-( l-m)h

For the damping layer, E* =(1 +- inD )R e{E*1, and

(mi-n) h

D -7-- f z'dz =B~h (43b)v -V2  12lv B

mh

where

A = [I + 2ne + 4n2e' + 6n'e 2 + 3n'e')/(l + ne) 2  (44a)

B = n{3 + 6n + 4n2 + 2n'e +- n~e 2 )/(l + ne)z (44b)

Since both components of the two layer beam are undergoing the same curva-

ture R1, over some length L, the energy dissipated

L

Ds ilm{Dv)- dL (45)

0

and energy stored

L L

U rD 'dL + R Dv) -dL (46)
s iJ.' 2

0 0

may be computed and a loss factor determined. Hence,

D _ D eB(47)
s 2wU - A + eB

r 16



Substituting Equations (44a) aind (44b), we find

nenD 3 + 6n + 4n' i 2n'e n'e' )
s (1 + en) I + 2en(2 i 3n + 2n2 ) + e2 n(

This is the same version of the oberst equation as given by Ross, Ungar, and

Kerwin (2). There is in the literature some controversy over the interpretation

of the term e, the ratio of stiffness. Ungar has given (10) Equation (48) in a

form where the value of e which is to be used corresponds to IE*/EI. Equation

-(40), as used here, leads to e = R {E*/E). The difference, of course, vanishese

if nD << I as was assumed in the computed results given by Ross, Ungar, and

Kerwin (2). Equation (40) as stated here is not entirely satisfying either.

The question arises, can the imaginary part be nonzero? If IE*I << E,

n 2 (31 t tz + 4t49
s h  (49)

which makes it once again apparent that a free layer treatment of a material with

small loss modulus will not produce a large system loss factor.

2. The Constrained Shear Layer (Transverse Deformature). The next case of

importance in the development of concepts is that of a beam of width b, or a

strip, isolated from a plate undergoing bending about one axis only. The

geometry of beam, shear layer, and cover sheet is shown in Figure 4. The

thicknesses of beam, shear layer, and cover sheet are h, t, and tc, respectively,

and each is assumed to remain constant throughout the deformation. The thick-

nesses are assumed to be small enough that the radius of curvature, R, of the

cover sheet is essentially the same as that of the beam, and we will assume

Poisson's ratio to be the same for both.

17
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Ihe asSuwIIId detormat io f iv I d is is iul lows:

(1) A transverse detlection, w, relaLud to the curvature by

I d2wR dx2 
(50)

which is a junction of one coordinate only and the same throughout all layers,

(2) an axial elongation of the beam centerline, Ub.

(3) an axial deformation of the coversheet centerline, u , and

(4) a shear angle in the shear layer, assumed to be uniform over its

thickness, varying only with axial coordinate, *(x).

These four deformation measures are not, of course, independent. Rather,

dw t + c c b (51)
= x 2t ) 

+  t

Equilibrium of horizontal forces on the beam and cover sheet leads to the require-

ment that the axial tension on each varies according to:

aT
- bT 0 (52a)

a Tb
- + bT 0 (52b)

Here T is the shear stress in the shear layer. As may be deduced from the free-

body diagrams on Figure 5, equilibrium of vertical forces leads to

av
bq + bPc + C (53a)

aVb
bq - bP +- =0 (53b)

b b +ax

19
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bq b q +b? a (53c)
-b b ax

The pressures, P cand P bl act on cover sheet and beam respectively, and qC9qb

and qare external loads applied to cover and beam and shear layer, respec-

tively. These forces will be used to treat the inertial forces in a later

section. Summation of moments on the three elements leads to

am -Tbt
c c- + V 0(54)

ax c 2

amb+ V -- = h 0 (55)ax b 2

bt V (56)

The measures of force and the measures of displacement are not independent,

but-are related through constitutive and geometric properties.

T =Ebt Cu (57a)
c C C ax

T =Ebh- (57b)
b b ax

M c c b dw (58a)
c 12 (1 - v') dx'

M E b h b d 2W(5b

(U u)b t C+ h dw

t2t X 59

21



Setting Poisson's ratio (v) to zero gives the result for a beam. The corn-

plex shear modulus, G*, is used, as simple harmonic motion is assumed. Substi-

tuting (59) into (54) and (55), and (58a) and (58b) into the results, leaves

E1 c(-v'2 ) b-!I -+ V - t C G*4' 0 (60)

E b h] d'w b h G* 0(1

12(1-v') bd--- b 2 *, 0(1

Substitution of (57a), (57b) and (59) into (52a) and (52b) yields

a
2
u

E ct c x -G** 0 (62)

E h h-ji- + G*4 0 (63)

Finally, the interlaminar pressures may be eliminated by combining Equations

(53a), (53b), and (53c) and setting

q = q c+ qb+ qs (64)

The result is

8V c + bq + 8V b + G*tb =0 (65)
axax ax

These five equations [(60) - (63) and (65)], together with the definition of 4

[Equation (51)], are to be solved for the six unknowns w, VC9 4', Vbs uc, and b

Substitution of Equations (60) and (61) into (65) gives

q +G*d d - D d~w = 0 (66)

dx t dx'

22



where

t +h
d=t+ 2 (67)

Ect + b (68)

t 12( -v2)

and substitution of Equations (62) and (63) into (51) gives

dP 0 A d dw (69)d-T  - t dT

where

g = G*/t f + } (70)
E t E bh

The coupled equations of motion, Equations (66) and (69) define the motion

of the system. The deformations of the shear layer may be identified by dif-

ferentiating and substituting one into another to obtain:

d G*d2  xd __
q1+ I G{ + D t I}- - D t d3 = 0 (71)

t t t dx Dt dx3 =()

An analogous process produces a single equation for the bending deformation, as

will be considered in a later section.

For the beam without external loading, neglecting the inertial forces leads

to the simple equation

d3 ,0 c2 d = 0 (72)

UX-T dx

where

c= G* + g 1 (73)
t2

23



Thus * = A sinh cx + B cosh cx + D. Other dependent variables may be determined

from the successive application of Equations (52a), (52b), (57a), (57b), and

(51).

For the particular case where both beam arid cover sheet are clamped at

x = 0 and free of external shear force at x L, the results are

=A sinh cx (74)

T = -T = bG* A (cosh cx - cosh cL) (75)
C c

G* A
uc - t j (sinh cx - cx cosh cL) (76)

CC

At Icosh cx - I xI
w d (cosh cx - 1) - g ( 2 - cosh cL)} (77)

Thus, for a tip moment M(L) = Mo, properly distributed over the beam and cover

sheet, we may evaluate the second derivatives of (77) and use (58a) and (58b) to

find

Md
A - - " (78)b D c cosh cL

t t

As the shear strain distribution [Equation (74)] is now known, the energy dis-

sipation may be evaluated as in the previous section. Since we have computed the

deformation of the composite under a tip moment, we may evaluate the rotation at

the point of loading and deduce a compliance, C*,

dwf = (C1 + iC2 )M (79)

xx x=L 1 22

24



From this coImIIliaiict, we may deducc the peak value of stored energy to be

us 2 1 o2 (,80)

where

=-i - (tanh cL -c)1(1

o (tanh cL L)(1
I bD e C

The energy dissipated is

irG 2 M Ld2

D = - L ( 12) F(O) (82)

where 8 = cL, and F(O) was defined by Equation (26).. The loss factor is then

found from

D

If the beam rigidity in both bending and tension is much larger than that of the

cover sheet, and if the shear layer is thin compared to the beam thickness,

A 6(1-v') 0 (84)
E bthlbc cosh cL,

c 2= G (85)
c c

6M4 (1-V2 )X
2

E bh'(86)
b

25



M M

6M (1-v') sinh cx
E th2 bc cosh cL (87)

b

The energy dissipated and peak stored energy follow, and the loss factor is found

to be

G2L 2

ns = 3(l-v
2 ) 2 F(cL) (88)

E thb

However, the quantity (L2 /th) cannot be made arbitrarily large or the tensile

force in the c, ver sheets [Equation (57a)] will become large enough to produce

excessive deformation. Further, several investigators have observed the exis-

tence of an optimum length for maximum damping (11).

Plunkett and Lee (12) considered the single constrained layer treatment

under the simplified loading criteria described in Section A.4. By assuming

a uniform surface strain on a substrate, they produced results applicable to

tension members or beams, subject to reasonable assumptions concerning the

relative dimensions of various components. They found that a constraining

layer, free on both ends, would have the maximum loss coefficient if its length,

L, satisfied a relationship

3.28 (89)

We note once again the occurrence of the combination of terms we have identified

as dominating constrained layer analysis. For stiff bands, or for very soft

shear layers, this maximum length may not be obtainable. Conversely, segmenting

may improve the performance of some configurations when the total length of the

26



application exceeds L,. It should be notcd that this length, Li, is for a layer

free on both ends. This should be compared with twice the length of the layers

in the preceding analyses, as they were fixed on one end and free on the other.

What Nokes and Nelson described (i1) as a boundary layer effect is made

evident by the preceding analysis. The distribution of shear strain in the

layer

N dLo sinh cx
-' Dbt cL cosh cL0t

is strongly dependent on the value of cL. For large cL, * is very nearly zero,

except as x - L. Thus, only that portion of the shear layer near to the end

contributes significantly to the energy dissipation. For small cL, the maximum

shear remains at the end, but a greater relative contribution is made by the

remainder of the layer. It is also important to note that we have found this

effect through the quasi-static analysis. Consequently, we can hardly view it

as a frequency effect. Rather, it is fundamental to the geometry of the con-

strained layer configuration.
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C. Equivalent Homogeneous Material

We have seen in earlier sections that the loss factor is not generally

increased through the use of more of the damping material in a single constrained

layer, either by increasing thickness or length. Thus, attempts to produce

greater added damping have turned to the use of more than one constrained layer.

Because of the complexity of such analyses when a complete solution is attempted

in the manner of the preceding sections, simpler approaches have been sought.

This led to the concept of an equivalent homogeneous material.

The concept may be effectively demonstrated by another quasi-static analysis,

this time of a large number of layers of damping material which are separated,

as shown in Figure 6a, by a large number of segmented constraining layers. As

a first approximation, we will treat these constraining layers as being rigid

and of negligible thickness. Let each constraining segment be of length L,

separated from its neighbor by a gap s. Let a thickness t of material with

complex modulus G* occupy the space between the constraining layers, which are

presumed to be staggered, as shown. Isolating the segment ABCD by bisecting

the constraining bands, and assuming a uniform shear stress T = G*y in each of

the four parallelograms, we deduce from the free body diagrams of Figure 6b that

T/2 = Trb (91)

for a width b. The segment AB, of length I + s, undergoes an elongation

A 2yt (92)

where the shear strain y is assumed uniform. The total axial force on the cell

is

T = bLG*y (93)
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Forming the average (homogeneous) strain by dividing the cell elongation by its

length and deducing an average (homogeneous) stress by dividing the force, T,

by the cell area 2tb enables the computation of an effective axial modulus for

the cell or

- ave bLG*y . L + s G* (L + s)L (94)eff _C 2bt 2yt 4 t 2

ave

If the constraining layer thickness, tc, is taken into account, and the separa-

tion distance, s, is neglected, the corresponding result is

E* G*L2  (95)
ef - 4t(t + t )

For a surface treatment which is many such cells in length and depth, an effec-

tive modulus such as this may be used, together with the total thickness, in the

Oberst equations. The assumption of rigid constraining layers is not, of course,

appropriate but was made to develop a simple theory which demonstrates well the

concept.

Plunkett and Lee took into account the deformations of the constraining

layer and arrived at a result (12)

t C cosh a*) -1
E*eff = Ec c (I + o * (96)

C

where

a* =(97)

and E is the extensional modulus of the constraining layer. For Ec
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a* O,.and

Et '
E* Ec tc *2 G*L 2(8

E'ff t + t - 4t(t + t)
c C

which is in agreement with the preceding result.

Nashif and Nicholas (13) took a somewhat different approach to the concept

of an equivalent homogeneous material. They hypothesized an equivalent homo-

geneous but anisotropic material, the complex moduli of which can be developed

from a special rule of mixtures.

Effective shear compliance = shear compliance of shear layer x volume

fraction of shear layer

Effective loss factor in shear = loss factor of shear layer x volume

fraction of shear layer

Effective longitudinal stiffness = sum of products of individual stiffness

x volume fractions

Effective longitudinal loss factor = longitudinal loss factor of shear

layer x longitudinal stiffness

fraction of shear layer

This approach does not appear, to provide for two important features of con-

strained layers. First, that the properties of a multiple layer configuration

will depend on the wavelength, and secondly, that the thickness of individual

layers are important.
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D. Other Modifications

In addition to the use of multiple layers to Increase damping, two other

avenues have been explored. These are the spaced layer and the anchored treat-

ment.

Ross, Ungar, and Kerwin (2) observed that the introduction of a shear-stiff

material between the beam and the damping layer would serve to amplify the

deformation in the damping layer. Whittier (4) analyzed and tested such a

configuration. It was demonstrated by Ungar (14) that the inclusion of an ideal

spacer in the design of a constrained layer treatment did not lead to significant

complications in the analysis. Nonetheless, it is useful to consider a rigid

band approximation in order to better understand the effectiveness of the

mechanism. We will consider the idealized design shown in Figure 7.

Two bands are employed, AB and CD, assumed to have negligible thickness and

bending rigidity. Since the relative displacement of two rigid bands is constant,

a uniform shear strain is developed, and the tensile force in each band varies

linearly from zero at A and D respectively, to a maximum value at B and C of

T = TbL (99)

The relative displacement when the beam is deformed to a radius of curvature R is

L h t~-(10
S= (s + + 6 ) (100)

R 2 2

where 6 is the location of the neutral axis above the centerline of the beam.

The beam thickness h and spacer thickness s are assumed constant. If the shear

layer is of thickness t,

= G* (101)
t
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The total moment is

m =bJ zEb dz + 'r (s + + -6) (102)

-6-h/2

The location of the neutral axis follows from the vanishing of horizontal force.]

Solving for 6, combining with the previous gives

6 2TR (103)

b

T=bL 2G* (s+ +-)l+2G*L2 -l (104)
(s 2 E bht

and

E bh 
3  (1+ E* ht

N b (bLG* h t b (105
+~ R )(s + - + -) 2G*LZ5)M 12R 2t 2 1+ a1

1 E bh t

But G*L 2 /E b ht << 1 if the rigid band theory is to be appropriate, thus we compute

the complex stiffness to be

E hb ______

+5* h5 + + L (106)
12 2. (st~~

and deduce a loss factor

s R e(EI)*(1)
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n
11 nbh (108)

E bh 3 t
12L 2 GI(s + + h) 2

The available loss factor is seen to be driven by (s/h) 2. The effectiveness of

the spacer may be evaluated by setting s 0. Then

h t2

n(Spaced Configuration) (s + 2 (109)
n(No Spacer) - (h . E) 2

Such increases are not fully achievable due to the difficulty in constructing the

ideal spacer-one which contributes nothing to the bending rigidity (and nothing

to the undesired shift in the neutral axis), yet maintains the full separation

distance. In addition to the previously mentioned spaced configuration, other

attempts were made by Lazan and co-workers. An anchored constraining layer with

spacer, as shown in Figure 8, was designed and tested (15). Substantial amounts

of damping were achieved through the geometric amplification of strain obtained

with this configurational addition.

It has also been observed that a design wherein ends of the constraining

layers are appropriately fixed can be considerably more effective than a design

for which they are not. Consider, for example, the two layer configurations

shown in Figure 9a. If the bands are very stiff, there will be no shear in the

upper layer and therefore no energy dissipation. A very thin lower constraining

layer acts as if it were not present at all, which has the effect of doubling

the thickness of the damping layer. This, of course, reduces the enerp

dissipation.

By way of contrast, consider the two-layer configuration of Figure 9b. If

the layers are sufficiently stiff, the damping is more than doubled by the added
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.,, s. layer. Adding further layers continues to increase the damping, as the same max-

imum strain is induced in each layer. Each added layer is, in fact, even more

-.. effective than the first layer, for the shear strain in the first layer is not

uniform. Such anchored configurations were considered by Lazan, Metherell, and

Sokol (16) who performed analysis and experiments on two and four layer con-

figurations of the class shown in Figure 9b undergoing bending deformations.

It should also be noted that the segmented and staggered constraining layers

discussed in the previous section constitute an anchored configuration. Adjacent

layers in the segmented treatment experience shear strains of alternating sign,

as in the anchored configuration of Lazan, et al.
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III. VIBRATING SYSTEMS

In the previous sections, we considered a number of quasi-static analyses

as convenient umeans of gaining familiarity with basic concepts. With this

background, we may proceed with examples of vibrating systems. The first of

these will be the beam, or plate, covered with a free layer.

A. The Oberst Beam

Let a beam of finite or infinite length, or a strip isolated from a plate,

be again covered on one side with a viscoelastic layer. The expressions for

the bending stiffness previousl) given [Equations (43a) and (43b)] remain valid.

Thus, the differential equation of motion is

D eV4W + (ph) e 0 (110)

where De = D + Dr, and we define an effective density,

(ph)e = pv t + pbh, (Ill)

and the transverse displacement is assumed to have modal amplitudes satisfying

Tn + n '(l +iqn )Tn = 0 (112)

For any real mode shape,

D V'Wn = (ph)e w n(1 +
i n 

)W n  (113)

Taking the real and imaginary part, we find from the ratio that

nn = Im(D e)/Re (Del (114)

which is the previously obtained result. Equation (114) and Equation (6) give

the same result only if the stored energy is computed by using the real part of
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the modulus, rather than the absolute value, as was noted by Ungar and Kerwin

(17). In writing (110), the shearing deformations of both components have been

nelected, as have the influences of rotatory inertias. The particular signifi-

cances of Equation (114) are as follows: (1) it is independent of the particular

mode; thus the loss factors of all modes are the same, and there is no dependence

on the resonant frequency; (2) the loss factor of beam and plate are the same;

and (3) the result is independent of the boundary conditions.

In the quasi-static analysis of a finite beam covered with a free layer,

deforming axially or in bending, the length of the configuration did not appear

explicitly in the loss factor. From this, we might have expected the loss factor

In vibration to be independent of the frequency. In a vibrating system, the

wavelength serves to determine the effective length. Since the loss factor was

found independent of the length, it must also be independent of wavelength and

natural frequency. Similar reasoning may be pursued to deduce that results

derived for a beam may be applied directly to the panel. The loss factor for

a low wave number mode of bending about one axis is the same as a high wave

number mode bending about that, or a transverse, axis. Thus, the loss factor

for all modes of the infinite plate is the same as of the beam. Further, the

details of planform and boundary condition are irrelevant to the determination

of the loss factor, for any mode of the finite plate with classical boundary

conditions may be put as a superposition of the modes of the infinite plate.

Unfortunately, this happy state of affairs does not survive the addition of

'a constrtining layer. It was found that the loss factor of constrained layer

systems depends upon the length of the constraining layer and that an optimal

length exists. For vibrating systems, then, the loss factor will depend on the

wavelength and on the natural frequency. Further, since continuous systems may

have many' natural frequencies and modes within a range of interest, a design
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which is optional for one mode will not be optimal for another, even for

frequency-independent materials. A second consequence of the dependence on

wavelength is, for finite configurations, a dependence on boundary condition.

Early investigators avoided this complexity by considering a beam of infinite

extent. Let us also begin in this manner.

I-
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B. infinite Beam; Single Constrained Layer

Actually, we have derived the governing equations in an earlier section.

Equations (66) and (69) for the bending displacement and shear displacement may

be adapted to the present problem by putting

q = (p bh + P t + p t c)w (115)

The mode shapes are:

W n= A sin k nx sin ft (116a)

V n = B ncos k nx sin Ilt (116b)

where

n n

W nP kn and n n are the frequency, wave-number, and loss factor, respectively, for

the nth mode. Let

g g 1(l + in ) (118)

I t +(119)
Ec tc Eb tb

X n 81/k n
2  (120)

Equations (66) and (69) then become

(MW n1(1 + in ) - D tk n )A n- k nG*dB n 0 (121s)

t { k n + S)B n - dk n3 A n 0 (121b)
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Combining these to eliminaLt 1mplitudes and then requiring Lhat real and imagi-

nary parts vani6h separately leads to two real equations for the natural fre-

quencies and modal damping coefficients. Solving these for loss factors, we

find:

n Yx
V ni

n = 1 + (2 + Y) X + (1 + Y)(1 + n 2 ) X 2 (122)
n v n

This is the accepted expression for the loss factor of a beam with single con-

straining layer.

This problem was first considered by Kerwin (1) and by Ross, Ungar, and

Kerwin (2) with this same result given in 1959. The equation was presented

in this form by Ungar (14), and a derivation substantially along the lines of

that given here was obtained by Mead and Ditaranto (18) using earlier work of

Mead and Markus (19) and Ditaranto (20). Ruzicka has studied (21) the physical

significance of the various terms and has produced results for a wide variety of

engineering applications.

The factor Y has been observed to be strictly a geometric parameter,

depending only on the moduli and thicknesses of the beam and the constraining

layer. Ungar has interpreted Y (14) as

(E1).
Y =-.- -- 1 (123)

0

i.e., the fractional increase in bending stiffness which would result if the beam

and constraining layer were completely coupled (bending as a single beam about

the composite neutral axis) compared to the bending stiffness which occurs when

the two beams are completely uncoupled (each bending about its own neutral axis).

To reiterate, Y is independent of the material properties of the shear layer and
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the wave length of the vibration. The shear parameter x takes these into

account. Ungar has also shown that the complex stiffness of the composite

beam is

X*

(EI)* = (El) ° { 1 + X* Y )  (124)

where

X* = X(1 + io) (125)

The loss factor is then readily extracted from Equation (114) and produces the

same result as Equation (123).

In addition to Kerwin (1), Ruzicka performed early experiments with this

configuration (22). Experimental confirmation of the predictions of Equation

(123) was given (23) by Yin, Kelly, and Barry and by many others since that

time.
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IV. ADVANCES IN ANALYSIS AND DESIGN

A. Beams with Constrained Layers

The shear damping mechanism was quickly applied to other geometries by

Ruzicka (24), Kerwin (5), Ungar (14), and others (25). For configurations which

are prismatic beams, the basic analysis was found to be readily adaptable to

provide the necessary predictive ability. A number of damped configurations

have been suggested by various authors; a few are depicted in Fig. 10 as a

stimulus to thinking. More recently, laminated hollow circular beams (26),

composite elastic-viscoelastic torsion members (27), and curved bars and helical

springs (28) have been considered. An innovative damping addition for beams was

recently described by Patel, et al (29). Several of these investigators have

developed analyses of their designs, using the now well-established principles,

to provide a method for design optimization.

The constrained layer result, Equation (122), was derived by assuming a

beam of infinite extent. The resulting sinusoidal mode shape is also appropriate

to a finite beam with pinned ends but to no other case. It is now well recog-

nized that the original equation cannot be expected to give good results for any

mode which differs too significantly from a sinusoid. Unfortunately, the first

mode of a cantilever is such a mode and is frequently encountered. If we return

to Equations (66) and (69) and use again Equation (115), we may solve for the

general displacements of the coupled equations. These substitutions produce

g6w ) a8w ph) e a';; 0 (126)x-8( + UT ax-
t

A coupled (sixth order) theory in a different dependent variable was first given

by Ditaranto (20), but a coupled theory is implied in the work of Whittier (4).

Head and Markus (19) derived this particular sixth order equation, provided
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solutions ior a number o boundary conditions, and demonstrated the orthogo-

nality of the modes. Finite element methods have recently been applied (30,31)

to the analysis of damped beams and enable the satisfaction of general boundary

conditions.

As was noted in an earlier section, multiple constrained layers have been

applied to beams. The work of Plunkett and Lee (12) with the equivalent homo-

geneous layer has already been mentioned. Derby and Ruzicka (25) gave general

results for a N layer laminate, while Nakra and Grootenhuis (32) gave specific

results for a four layer sandwich using two viscoelastic layers of differing

properties in an attempt to improve the frequency effectiveness. Nashif and

Nicholas (33) and Jones, Nashif, and Parin (34) provided experimental data on

beams with up to 14 layers. Finally, theoretical work with large numbers of

layers on beams has been undertaken by Asnani and Nakra (35). Miles recently

presented (36) a theory along the lines of earlier work (25) and showed that

predictions are in satisfactory agreement with available experimental data for

multi-layer configurations. Ditaranto and Blasingame have contributed computa-

tions for three and five layer beams obtained from the Ross, Ungar, and Kerwin

theory (37) and from the sixth order theory (38) and have provided useful

approximations and design rules. Particularly notable in Ditaranto's contribu-

tions (26) is the finding that the loss factor vs frequency curve is independent

of the choice of boundary condition, among all nondissipative boundary conditions.

The boundary condition does, of course, influence the natural frequency and

therefore the values of the modal damping coefficients. Grootenhuis performed

computations for five layer beams and found (39) that symmetric five layer beams

could be reduced to an equivalent three layer configuration. Useful design

guides were given, including that when two differing viscoelastic materials are
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used in an attempt to improve the frequency response there is no need to separate

them with a third elastic layer.

Several of the higher order effects have received recent attention. Markus

(40) demonstrated that the effects of rotatory inertia, inertial and shear forces

were inevitably to reduce the loss factor from that of the Ross, Ungar, and

Kerwin theory. From the work of Mentel (41), however, it may be taken that the

dilitational effect may be neglected in comparison to that of shear. Transverse

compressional damping was found (42) to be significant only at the thickness-

stretch resonance of the viscoelastic core. Thick and stiff cores, on the other

hand, have been shown (43) to produce significant energy dissipation due to core

bending, especially in the lower modes. In some recent work, D. K. Rao (44) has

given a quantitative comparison of a number of the higher order effects on the

loss factor and natural frequency of short, damped sandwich beams. Korites and

Nelson found that the dissipative heating in the damping layer caused substantial

reductions in loss factor (45). This introduces a serious nonlinearity into the

analysis for the properties are then amplitude dependent. The influence of

varying core geometry has been explored as well. Sandman (46) analyzed a

segmented core tuned to the first resonant mode, while Rao and StUhler (47)

allowed the core to have a linearly varying thickness. The nonlinear equations

of motion for large amplitudes have been considered (48). The super-harmonic

resonance was identified as a source of difficulty for the complex modulus

method. It should also be noted that this last work contains a good review

of the literature on linear sandwich plates with viscoelastic cores.

In summary, the theory for laminated beams with viscoelastic layers is well

in hand. The Kerwin theory has been found over the past twenty years to have

wide applicability and, when used properly, to be adequate for purposes of

engineering design. The equations were considered in 1959 to be somewhat

48



- ________ 7- ----. ~ - ~-

cambersome for design purpobes, but the almost universal availability of

computers has removed this obstacle.

49



B. Layered Plates

It was noted in an earlier section that the loss factor of a plate with

unconstrained layer is the same as that of tile beam, but that that of the plate

with constrained layer is not. In view of the greater complexity of plate

vibrations, it should not be too surprising that the development and analysis

of constrained layers for plates trailed the development of treatments for beams

by about a decade.

There was, however, a closely related structural configuration which

received considerable attention early in the sixties - the sandwich plate. In

a series of papers, Y. Y. Yu developed a theory for such plates and in 1962

considered (49) the damping due to a viscoelastic core in a symmetrically con-

structed three layer plate of arbitrary thickness ratios and material properties,

subject to a restriction of small values of material loss factors. Sandwich

plates were not found to be efficient for damping low frequency motions.

Ditaranto and McGraw examined three layer plates with viscoelastic cores and

unsymmetrical construction in 1969 (50). They noted that, as in the case of the

beam, the relationship between loss factor and frequency was independent of

boundary condition. Further, some results for plates could be deduced from

results obtained for beams. Although a general theory was given, only results

for simply-supported sandwich plates were presented. These results are less

general than those of Yu due to the use of a simpler assumed deformation,

analogous to those earlier applied to beams. Thus, the bending of the shear

layer is ignored, as is the rotatory inertia. In 1974, Sadasiva Rao and Nakra

returned to the more general displacements assumptions of Yu and considered the

bending of unsymmetrical, simply-supported sandwich plates (51). The extensional

effect was found to be of importance only in very stiff cores, but the rotatory

inertia of the elastic elements proved to be significant.



Attempts to develop approximate analyses of multilayered plates have par-

alleled the efforts for beams. A treatment employing multiple viscoelastic

layers separated by constraining layers cut in rectangular segments of optimal

dimension was fabricated and tested (52). The design was found to be effective

and well-modeled by an equivalent layer approach based on that given by Plunkett

and Lee for beams (12). Jones (53) applied multiple layer treatments with

continuous constraining layers to panels and successfully predicted their

effectiveness.

Although analytic methods have been very successful in developing the

differential equations for damped plates, solutions have been obtain'- only for

the simply supported edge condition. The numerical methods have been applied

to obtain results for other boundary conditions. Finite element results have

been compared with experiment for a free-free square plate (54,55) and for a

circular sandwich plate (56). In addition to simple plates, the damping of the

vibrations of stiffened panels has also been considered (57).

To summarize, the constrained layer damping of plates has received much less

attention over the past two decades than have damped beams. The governing equa-

tions have been developed, but the complexity of the boundary condition has

precluded the obtaining of extensive results. It has been established that the

loss factor vs frequency expression is independent of boundary condition, but

the natural frequency for a given boundary condition must still be determined,

and this requires the solution of the coupled problem. There has also been less

success in developing innovative and effective geometrical arrangements for

plate damping; increased effort in this area is indicated.
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C. Other Geometries

Some advances in the analysis of the damping of free layers have also

occurred. The analysis of torsion of a metal strip coated on one side by a

polymer was recently developed (58) and the coated torsional pendulum proposed

as a means of experimentally determining the complex modulus.

Annular inserts of high damping materials placed in holes drilled in highly

stressed regions of vibrating members have been suggested (59) as being a means

of enhancing the damping. The wisdom of deliberately introducing a material

discontinuity in a region of high stress appears dubious, however.

Tuned dampers have been developed and successfully applied. In some, the

deformation of the viscoelastic layer is predominantly axial, in others the

inertia of the mass is used to develop a shear deformation (60). In none,

however, has anything more than a rudimentary analysis been necessary. The

same geometrical arrangement as in the tuned damper has proven to be a popular

and successful means of determining material properties.

Sandwich and coated shell structures have also been considered. For the

most part, adaptations of the analytical methods developed for plates have been

employed. Finite element methods will undoubtedly receive extensive application

to the design and prediction of damping for shell structures,
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V. SUMMARY

Substantial effort has been expanded over the past two decades in advancing

the understanding and effectiveness of constrained layer damping treatments.

During that period, the characteristics of and procedures for finding optimal

designs have come to be better understood, innovative geometrical arrangements

for obtaining the necessary large shear strains have been developed, and the

limitation of the theory to the simply supported end condition has been removed.

The access to computers, and even pocket calculators, has proven to be an enor-

mous advantage, for the design equations are burdensome with hand calculation,

but inconsequential with computational assistance. Larger machines have been

and will be applied to some of the remaining tasks, such as plates of general

rh ndary condition and material properties varying with amplitude, temperatures

and frequency. The well known propensity of the polymeric materials to

have a significant temperature dependence has led designers to seek means of

incorporating two materials of differing properties in the same damping addition.

This approach appears to be a promising means of achieving near optimal effec-

tiveness over a range of temperatures, or equivalently, frequencies.

Of no small significance is that new materials have been developed (61),

and material properties have been determined with greater certainty than was the

case two decades ago. This has permitted the designer to proceed with greater

confidence. The confidence of the designer has also been enhanced by the growing

number of cases in which constrained layer damping treatments have been proven

to be successful as means of controlling the amplitude of resonant vibration

(62,b3,64). Certainly these successes will lead design engineers to increased

efforts to use constrained layer damping technology.
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